Revision 4, 2015-04-16

SHIPFLOW DESIGN Tutorials

ADVANCED

Table of Contents

Introduction to SHIPFLOW-FRIENDSHIP DESIGN environment.	5
Tutorial 1 part 1 – Self propulsion simulations	7
Tutorial 2 part 1 – Forebody optimization – bulb – Delta Shift	13
Tutorial 2 part 2 – Ensemble Investigation	24
Tutorial 3 part 1 – Forebody optimization – shoulder – Surface Delta Shift	
Tutorial 3 part 2 – NSGA-II Optimization	
Tutorial 4 part 1 – Appendage modelling – overlapping grids	
Tutorial 5 part 1 – Complex Appendage modelling	43
Tutorial 5 part 2 – Appendage optimization.	48

Introduction to SHIPFLOW-FRIENDSHIP DESIGN environment

• First start of the SHIPFLOW Design application (Windows OS)

START > All Programs > FLOWTECH > SHIPFLOW x.x.xx > Shipflow Design

Workspaces	Menu	Documentation browser 3D View tab
Image: Connection Continuention Provided in the subscalar Image: Connection Continuent on the subscalar Image: Connection Continuent on the subscalar Image: Connection Content on the subscalar Image: Content on the subscalar Ima	Verre Help ? Coloct Editor	Image: Source Content allow over it is a content of the source of the sourc
Consol	e	v n v
(r.		© copyright FLOWTECH International AB, all rights reserved@ copyright FREIPID94DP SYSTEMS GmbH, all rights reserved baseline I I I I I I I I I I I I I I I I I

Customized workspace

Tutorial 1 part 1 – Self propulsion simulations

This exercise is a practical introduction to self propulsion simulations with SHIPFLOW. It requires knowledge about XPAN, XBOUND and XCHAP. It also requires basic knowledge about propeller modelling with SHIPFLOW, for example the tutorial in ho_propellers.

The examples are set up using the zonal approach with very coarse grids to reduce computational times during the exercise. Real cases must be performed with a much finer grid resolution.

There are three simulations required to evaluate the propulsive factors, a towing (resistance), an open water (POW), and self propulsion simulation. All three simulations will be set up during the exercise.

There are two ways to perform the self propulsion simulations, the first is fully automatic where the program executes resistance, pow and selfpropulsion in a series and the second way is to run the three parts separately. The manual variant is described in handout ho-selfpropulsion.pdf that can be found on the course DVD.

1. Start with importing the configuration "ex1" from **DVD:\AdvancedTraining\Tutorial_Advanced_1\source**

File	CAD Connections	Optimization	Visualization	View	Help	?		
	Open Project						Ctrl+O	
10	Open Sample							A 3DView X A 3DOve
	Import							IGES (Subset)
° 🗖	Data Connection							
ø	Close Project						Ctrl+W	Results (SHIPFLOW)
	Save Project						Ctrl+S	Offsets (NAPA/SHIPFLOW)
	Save Project as						Ctrl+Shift+S	OpenNURBS (Rhino/3dm)
	Export							•
-	Connector							+
	Execute Script							
ď	Settings							
ത	Fxit							

2. Save the project in your working directory

3. Now check the configuration, see that there is already a propeller geometry input but no propeller model defined.

4. Since the propeller adds a non symmetrical flow in the domain it has to cover both sides, therefore one should add symm (nosym) command in the xflow section as below

Dbject Tree						*	•	x
P 🗅 CAD 🖵	Con	nection	is D	Optimiz	atior	1		
Туре	Name	9						
	4	Cor	figurati	ons				
EConfigurationSbf		SHA	ev1	ons				2
r conngaradonom		_	A xfb	ow				ž
			- <u>-</u>	title				2
			-	program	n			?
				vship				2
			-	hull				2
			_	offset				2
				symmet	r			S
		+	📥 yru	prop an				8
		+	👝 χρι	rid				ž
		+	📥 xct	hap				2
	Þ	Con	putatio	ons & Res	ults			
	Þ	Ö Ann	lication	5				
	. 6			-				
L								_
📝 Object Editor						۸		×
(🔊 ≡ ◀ 🕨						_		×
expertOption							-	+
<u> </u>								-
symmetry							6	3
Symmetry nosyn	۱						0	2

5. The next step is to add the propeller lifting line model in the xchap section, make sure that the id matches the propeller id. The cf parameter sets the frictional coefficient for the propeller blades at its local Reynolds number.

							-				
				+ (S X	pan				12	
				+ (n 🔁	grid					
				- (🖣 X	chap				2	
					- 4	🕤 par	all			2	
					_	👌 con	trol			2	
						🕤 lline				2)
		\triangleright		Com	putat	ions &	Resu	lts			
		N	34	اممة	icatio			_			
🚺 ОБ	ject Editor						1			•	×
[幕 ■	<►							(0		×
relax										-	+
lline											3
Id	ID1								8		2
Diskon	on								-) (2
Cf	0.004							-	8		2
- L											

6. Add the POW command and select JV=[0.2,0.9] (recommended is to cover the whole working range of the propeller with intervals not larger than 0.1). Set START to start. Limit the number of iterations to 50 with the keyword MAXIT in the POW command (recommended is 500). Set the name of the POW output file with the keyword OUTPUT to POW.dat

	Þ	- A xchap parall control pow line Computations & Results	? ? ? ? •
📝 Obje	ct Editor		x
\$ ■	< ▶	् 🛛	×
ſ'n		*) +
pow			8
Start	start	•	?
Maxit	50	• 8	?
Output	POW.dat	8	?
J	[0.2, 0.9]	· 8	?

7. Add the SELFPROPULSION command and set it to ON. The CTOW value will not have to be set since it will be automatically calculated by the ITTC78 command that we will set further down.

- 8. Add the ITTC78 command and set it to ON. In order to extrapolate data to full scale some data has to be set here:
 - 1. LWL in model scale LM=5.5
 - 2. LWL in full scale LS=63.0
 - 3. Ship propeller diameter DS=3.0
 - 4. Maximum transverse area above the waterline A_T=55
 - 5. Model propeller open water RPS NPOW=18

9. In order to run the self propulsion automatically add spauto(all, simrun) in xflow section.

P CAD 🖵 Connections D Optimization	0
Type Name Quick Find (Ctrl+F)	_
🔺 🛄 Configurations	
FConfiguratio 🕎 ex1	?
- 🤚 xflow	?
title 👆	?
lange program	2
	2
Anui Anui	2
	2
A symmetr	2
selfnr 🚬	2 🗖
🚺 Object Editor	■ ▲ ◀ X
8 ≡ ◀ ►	_ □ ×
expertOption	- +
spauto	8
run_ all	• ?
runtype simrun	• ?

10. Optionally a new, faster solver can be used in SHIPFLOW versions 6.0 and newer. In xchapl control add solver (krylov) like in the picture below.

		Confi	gurations	
FConfigurati	o	exercise exercises exercis	x1	2
		+	xflow	2
		+ 占	xpan	?
		+ 📇	xgrid	?
		- 💾	xchap	2
			👆 parall	2
			acontrol	2
			👆 pow	?
			👆 lline	2
	ь	Comr	outations 9. Posulte	
📝 Object	t Editor			■ ▲ ◀ X
🚺 Object	t Editor			■ ▲ ◀ X
✓ Object⊗ ■ grids	Editor			× > A =
✓ Object	t Editor			■ ▲ ◀ X
✓ Object	t Editor			■ ▲ ◀ ×
✓ Object	t Editor			A 4 X A
✓ Object	art 0			A 4 X X X X X Y

- 11. Now the configuration is ready to run, check that the number of iterations is set to 200, save the project and start the computations. (The computations should take approximately 15 minutes on a 2.0Ghz laptop with 2 processes.)
- 12. After the computations are finalized all the results are written to id_OUTPUT file and also a report is prepared which can be visualised in the GUI under Documentation Browser tab or in any web browser as it is an html file.

Documentation	n Browser	A 301		DOverview A		TROTION	0113 10	DICTICTUCI				
< ► 🛛 🛇	~ ~	۵ 🖬 (?									
🔼 Home 🗙 🚱 Re:	esults report	t l										
FLOW1	DEC.	H A B			Self Pr	opulsion exa	ample 1					
		Shin na	rticulars									
		Length L	- _{WL} (m)					63.00				
		Length I	-w/L (model) [m]					5.500				
		Hull surt	ace roughness k	_s (µm)				150				
		Wetted :	surface S _{Hull} (m ²]				678				
		Bilge ke	el area S _{BK} (m²)					0.000				
		Proj. are	a above water li	ne A _T (m ²)				55.000				
INTERNATIO	ONAL	AB										
elf Propulsio imulation results Ship Model speed speed Vs Vm	Froude no. Fn	Reynolds no. Rnm	esults Res. coeff. total CTm*1000	Res. coeff. friction C _{Fm} *1000	Res. coeff. pressure C _{Pm} *1000	Res.coeff. wave C _{Wm} *1000	Form factor k	Thrust ded. ^t m	Mean wake ^W Tm	Rel. rot. effic. n _{Rm}	Prop. effic. Nom [-]	Nom. wake ^W Nm [-]
Ship Model speed speed Vs Vm [kn] [nr/s] 15.27 2.321	Froude no. Fn [-]	Reynolds no. Rom [-]	esults Res.coeff. total CTm*1000 [-] 5.843	Res. coeff. friction C _{Fm} *1000 [-] 3.048	Res.coeff. pressure Cpm*1000 [-] 0.498	Res. coeff. wave C _{Wm} *1000 [-] 2.296	Form factor k [-] 0.182	Thrust ded. t _m [-] -0.370	Mean wake [₩] Tm [-] 0.220	Rel. rot. effic. ⁿ Rm [-] 1.048	Prop. effic. Nom [-] 0.689	Nom. wake ^W Nm [-]
Bit Model Ship Model Speed speed Vs Vm [In] [In/s] 15.27 2.321	Froude no. Fn [-] 0.316	Reynolds no. Rnm [-] 1.217e+007	esuits Res. coeff. total CTm*1000 [-] 5.843	Res. coeff. friction C _{Fm} *1000 [-] 3.048	Res.coeff. pressure Cpm*1000 [-] 0.498	Res. coeff. wave C _{Wm} *1000 [-] 2.296	Form factor k [-] 0.182	Thrust ded. t _m [-] -0.370	Mean wake ^W Tm [-] 0.220	Rel. rot. effic. n _{Rm} [-] 1.048	Prop. effic. ^N 0m [-] 0.689	Norn. wak ^W Nm [-] 0.58
Bit Propulsion nulation results Ship Model speed Vm [kn] [m/s] 15.27 2.321	n Simu Froude no. Fn [-] 0.316	Reynolds no. Rnm [-] 1.217e+007	Res. coeff. total CTm*1000 [-] 5.843	Res. coeff. friction C _{Fm} *1000 [-] 3.048	Res.coeff. pressure Cpm*1000 [-] 0.498	Res. coeff. wave C _{Wm} *1000 [-] 2.296	Form factor k [-] 0.182	Thrust ded. tm [-] -0.370	Mean wake ^W Tm [-] 0.220	Rel. rot. effic. n _{Rm} [-] 1.048	Prop. effic. ^N 0m [-] 0.689	Nom. wak ^W Nm [-] 0.58
Bit Propulsion mulation results Ship Model speed speed w Vs Vm [kn] [m/s] 15.27 2.321	n Simu Froude no. Fn [-] 0.316	Reynolds Roynolds no. Rnm [-] 1.217e+007 TTC78 perfor Sh Vs [kn] 15.27 12	esuits Res. coeff. total CTm*1000 [-] 5.843 mance predicti ip res. Eff. power PE (M) [MV] 25.555 0.98	Res. coeff. friction CFm*1000 [-] 3.048 on r P0 [MM] 6 0.425	Res. coeff. pressure Cpm ¹ 1000 [-] 0.498 aff rate Thrust Ts [145] Torque Qs (148) 2.679 91.67 25	Res. coeff. Wave Com*1000 [-] Z.296 Tot. eff. Prop. e np np [-] [-] Z.319 1.4	Form factor k [-] 0.182 ff. Hull eff. nH [-] 77 1.498	Thrust ded. tm [-] -0.370 Mean wake \format{WTS} [-] 0.086	Mean wake ^W Tm [-] 0.220 Advance rat JTS [-] 0.83	Rel. rot. effic. n _{Rm} [-] 1.048	Prop. effic. Nom [-] 0.689	Nom. wak ^W Nm [-] 0.58
Bit Propulsion mulation results Ship Model speed Vm [In] [m/s] 15.27 2.321	n Simu Froude no. Fn [-] 0.316 SI SI O N A L	Idation R Reynolds no. Rnm [-] 1.217e+007 TTC78 perfor hip speed [kn] 15.27 A	esuits Res.coeff. total CTm*1000 [-] 5.843 mance predicti ip res. Rs PE [MV] [MV9] 25.555 0.98	Res. coeff. friction CFm*1000 [-] 3.048 on r Deliv. power P0 [MM] 6 0.425	Res.coeff. pressure Cpm*1000 [-] 0.498 aft rate Thrust Torque Qs [143] [R41] 2.679 91.67 Self Pr	Res. coeff. wave Cwm*1000 [-] 2.296 Tot. eff. Prop. e n _D n ₀ [-] [-] 2.319 1.4 opulsion exa	Form factor k [-] 0.182 ff. Hull eff. nH [-] 77 1.498 ample 1	Thrust ded. [-] -0.370 Mean wake WTS [-] 0.086	Mean wake WTm [-] 0.220 Advance rat JTs [-] 0.8	Rel. rot. effic. 'IRm [-] 1.048	Prop. effic. ^{10m} [-] 0.689	Nom. wak
EIT Propulsion mulation results Ship Model speed Speed Vm [kn] [m/s] 15.27 2.321	n Simu Froude nc. Fn [-] 0.316 0	Idation R Reynolds no. Rnm [-] 1.217e+007 TC78 perfor hip speed Vs [kn] 15.27 12 A B	Res. coeff. total CTm*1000 [-] 5.843 mance predicti pres. Eff. power Rs PE [MM] [MM] 25.555 0.98	Res. coeff. triction CFm*1000 [-] 3.048 on r Deliv. power Pp (MM) 6 0.425	Res.coeff. pressure cpm*1000 [-] 0.498	Res. coeff. wave Cwm ⁻¹ 000 [-] 2.296 Tot. eff. Prop. e np no [-] [-] 2.319 1.4 opulsion exa	Form factor k [-] 0.182	Thrust ded. [-] -0.370 Wrs [-] 0.086	Mean wake WTm [-] 0.220 Advance rat JTs [-] 0.81	Rel. rot. effic. 1/Rm [-] 1.048	Prop. effic. ^{Nom} [-] 0.689	Nom. wak
EIT Propulsion mulation results Ship Model speed yeed Vs Vm [In] [m/s] 15.27 2.321	n Simu Froude no. Fn [-] 0.316 SI SI O N A L	Idation R Reynolds no. Rnm [-] 1.217e+007 ITC78 perfor Import [km] 15.27 Import A B	esuits Res. coeff. total CTm*1000 [-] 5.843 mance predicti ip res. Eff. powor Rs PE [MV] [MV/9] 25.555 0.98	Res. coeff. friction CFm*1000 I [-] 3.048 on P0 Image: P0 Sh P0 [M/M] 6 0.425 Model propulso J J	Res.coeff. pressure Cpm*1000	Res. coeff. wave CWm*1000 [-] 2.296 Tot. eff. Prop. e n0 [-] 2.319 1.4 opulSion exa eristics Torque coef 10 ⁰ Hom [-]	Form factor k [-] 0.182 ff. Hull eff. nH [-] 77 1.498 ample 1	Thrust ded. [-] -0.370 Mean wake WTS [-] 0.086	Mean wake WTm [-] 0.220 Advance rat JTs [-] 0.8	Rel. rot. effic. 'IRm [-] 1.048	Prop. effic. ¹ 0m [-] 0.689	Nom. wak ^W Nm [-] 0.58
err Propulsion mulation results Ship Model speed Vs Vm [In] [m/s] 15.27 2.321	n Simu Froude no. Fn (-] 0.316 SI SI SI O N A L	Idation R Reynolds no. Rinm [-] 1.217e+007 TTC78 performing Ng [kn] 1.5.27 A	esuits Res. coeff. total CTm ⁴¹⁰⁰⁰ [-] 5.843 mance predicting pres. Eff. power PE (MV) [MV) 55.555 0.98	Res. coeff. friction Crm*1000 [-] 3.048 on on r Deliv. power Po [M/V] 6 0.425 Model propulso Advance ratio J [-] 0.2	Res.coeff. pressure ccm*1000 [-] 0.498 aft rate Thrust Torque ns Ts Qs [tAt] [kM] [kM] 2.679 91.67 25 Self Pr Thrust coeff. 10%Tm [-] 000 3.8459	Res. coeff. wave Cwm*1000 [-] 2.296 Tot. eff. Prop. e no [-] [-] 2.319 1.4 opulSion exa eristics Torque coef 100"Kom [-] 4 4	Form factor k [-] 0.182 ff. Hull eff. nH [-] 77 1.498 ample 1 ff.	Thrust ded. 1m [-] -0.370 Mean wake WTs [-] 0.086	Mean wake WTm [-] 0.220 Advance rat JTS [-] 0.8t	Rel. rot. effic. 'iRm [-] 1.048	Prop. effic. ¹⁰ m [-] 0.689	Norn. wraio ^W Nm [-] 0.584
err Propulsion mulation results Ship Model speed Vs Vm [in] [m/s] 15.27 2.321	n Simu Froude no. Fn (-] 0.316 SI SI SI O N A L	Idation R Reynolds no. Rnm [-] 1.217e+007 TC78 perfor hip speed Sh [kn] 15.27 12	esults Res. coeff. total CTm*1000 [-] 5.843 mance predicti ip res. Eff. power Rs PE [MM] [MM] j5.555 0.38	Res. coeff. friction Crm*1000 [-] 3.048 on r Deliv. power P0 [MMM] 6 0.425 Advance ratio J [-] 0.2 0.9	Res.coeff. pressure Cpm*1000 [-] 0.498 aft rate Thrust Torque ns Ts Qs [k3] [k41] [k41m] 2.679 91.67 25 Self Pr Dropen water characted Thrust coeff. 10%Tm 10%Tm 1-3 000 3.8459	Res. coeff. wave Cwm*1000 [-] 2.296 Tot. eff. Prop. e no [-] 2.319 1.4 opulSion exa eristics Torque coef 100 ⁴ C _{0m} [-] 4 4	Form factor k [-] 0.182 ff. Hull eff. n _H [-] 77 1.498 ample 1 ff.	Thrust ded. [-] -0.370 WTs [-] 0.086	Mean wake WTm [-] 0.220 Advance rat JTS [-] 0.81	Rel. rot. effic. 1Rm [-] 1.048	Prop. effic. ¹⁰ m [-] 0.689	Norn. weak WNm [-] 0.584

Tutorial 2 part 1 – Forebody optimization – bulb – Delta Shift

For this tutorial you need to use Friendship FRAMEWORK together with SHIPFLOW.

- 1. Import roro_medium SHIPFLOW configuration from **DVD:\AdvancedTraining\Tutorial_Advanced_2\source**
- 2. Save the project as roro_opt.fdb and run calculations without any changes to the configuration.
- 3. Go to the Table Viewer and double click on results for V, CWTWC and Sref to create parametres for evaluation.

- 4. Go to 3DView end extend the view to see the entire hull.
- 5. Set the view to Y to and zoom in to see the bulb
- 6. Create a Scope and name it bulb_delta_length, make it default by clicking on it with middle mouse button.

- 7. Create 3 points and locate them as specified below:
 - 1. p1(0.81,0,0)
 - 2. p2(-1,0,0)
 - 3. p3(-5,0,0)
- 8. Select these points and create a B-Spline curve, make sure it is 2nd order.

9. Create a Design Variable, name it delta_length, set the value to 1.

10. Now replace the Z coordinate of the p3 with this design variable

D Object Tree	■ ▲ ◀ X	Force Update / Run on Selected Object(S)
P CAD Q Connections D Optimic	zation	0
Type Name	(2	1
PScope ▲ ■ bub_deka_length P3DPoint ▲ ● p1 P3DPoint ▲ ● p2 P3DPoint ▲ ● p2 P3DPoint ▲ ● p3 PBSplenc ▲ ✔ rt PBrane ▲ ✔ ct PFarame ▲ eval_cWTWC PBrane ▲ eval_sref PPrame ▲ eval_yref	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Object Editor		
gr = < > [buib_deita_length]p3	E2DBolot	
• p3	1 5 7	
General		
x [-5	• ?	
Y (0	• ?	
2 1 delta_length	•	
Display Options		•
Color (

11. Select the curve, create Delta Shift and name it length

12	Edit the	length	Delta:	shift	mark	Delta [®]	X in	the (General	section	and set	t factor	to -1	
14.	L'un the	iongui	Duna	sinn,	main	Dona.	x III	une v	General	Section	and so	i iucioi	10 1	

📝 Object	Editor	■ ▲ ◀	×
🔊 🔳 ◀	bulb_delta_length tsh	୍ 🛛	×
🖥 🛯	h	FDeltaShift	Â
General			
Delta X	×	2	
Delta Y		2	
Delta Z		?	
Factor	4 -	• •••	_
Deltacurve	c1	• ?	=
Deltacurv	e Abscissa		
x	×	2	
γ		?	
z		2	
<u> </u>			

13. Make the baseline the default scope

- 14. Select bulb_delta_length scope and make a copy of it, rename it to bulb_delta_height
- 15. Go to that scope and rename length with height and delta_length with delta_height
- 16. Edit the height Delta shift, mark Delta Z in the General section and set factor to 1

📝 Object	Editor				×
\$ ■ ◄	bulb_delta_height height	it	0		×
		FDel	taS	hift	-
🖥 🔓 heigt	ht			?	
General					
Delta X	×		(2	
Delta Y			(?	
Delta Z	×		(?	
Factor	1		•	?	
Deltacurve	c1		•	2	-
Deltacurv	e Abscissa				
×	×		(?	
Y			(?	

17. Now you should have two scopes as in the picture below:

18. Create Delta Sum name it delta_bulb and use delta_lenght and delta_height as input.

File	CAD	Connections Optimiza	ation	Vist	alizal	tion F	eature	es Vi	ew	Help 🕐									
9.9		Scope	Þ	0	9	P	•	Ш		10.1									
D Objec				=		∢ x			?	Document	ation Browser	×		3DView	×	3DOverView	X 📄 F6		
P D C	0	Points •	ni	ation				1											
/pe	J	Curves)																	
		Surfaces				2	-												
icope 3DPoint	-					2	CI.										1		
3DPoint 3DPoint		Parameters •				1													
3DPoint	1	Offsets	-			2	1										/		
BSpline DeltaShift		Meshes and Solids				2	60										`		
Parame	2	Transformations	2	Rota	tion	Intel		1											
3DPoint	an.	Blade)	1	Scal	ng														
3DPoint 3DPoint	_		12	Tran	slatio	n													
BSpline	2	FDeltaShift F12	E	Tran	sform	nation C	hain							-	_				
DeltaShift	_	dalta baiabt		More															
Scope Parame Parame		SHF_Import_as_of eval_CWTWC eval_Sref		, Swe	ep														
C Ohier	t Edit	or	2	Shift	s			+											
		bulb_delta_height	1	Aux	liaries			• e	Delt	a Sum	1								
			K	Coo	rdinat	e Syste	m	ę	Delt	a Product	FDeltas	ium							
ie neig	jnc		-		-			15	Mat	rix4	The Delt	The Delta Sum is a t			Sum is a transformation that simply takes the				
General						•		-			FDeltaSh	ift an	d sun	insrormations up their	delta va	ues before app	lied to		
Delta X	×				(7	9					an object entries.	t. The See al	re is so FD	no relevan SeltaProduc	te regar t.	ding the order (of the		

📝 Object Editor			-	x
📌 🔳 ┥ 🕨 tdc1		0		×
Calta_sum	FI	Delt	aSu	m ?)
General				
Functions	:h ht	* *] 0	2

19. Select the bulb offset group and create and Image Offset Group and name it bulb

- 20. Use the delta_bulb Delta Sum transformation as an Image transformation.
- 21. Now go to the offset group assembly and replace the existing bulb group with the image that was just created
- 22. You should be able to see that the Image Offset changes its shape when you edit delta_length and delta_height design variables.

- 23. Create a scope and name it bulb_tip_position and make it default
- 24. Create point at the tip of the bulb

	Object Editor	■ ▲ ◀ X
1	🔳 ┥ 🕨 bulb_tip_position p1	_ Q ×
		F3DPoint
•	p1	62
Gen	eral	
×	-4.878	• ?
Υ	0	• ?
z	-4.6367	• ?

25. Select this point and create Image Point and use the delta_bulb Delta Sum transformation as an Image transformation.

FRIEND	SHIP-Framework - Z:/mag	nus/temp/roro_opt.fdb*
- File	CAD Connections Optim	nization Visualization Features View Help ?
્ર	Cope Scope	þ 🥝 🔦 🄌 🖡 🕨 🔳 🗏 🗷 🛓
P D C Type	 Points Urves 	nization
FScope	C Surfaces	
FScope EScope	Parameters	Parameter
FScope	Offsets	Series Parameter FParameter
FDeltaSum FImageO	🗎 Meshes and Solids	String Parameter The parameter is a central object in CAESES/FFW. Typ parameters hold discrete pumpers a.g., '1.0' or arbitra
FParame FParame	🖫 Transformations	Parameters roa be switched to design variables other
FParame	🕑 Blade	 can be used by design engines (menu > optimization) automation purposes. In this case, the parameter can have a single number and no expression.
	• FImagePoint F12	

27. By using 3DPoint:x and getMax(0) functions of the Image bulb tip point and transom offset section create a formula to measure the Length Over All. This will be used as a constraint during the optimization.

📝 Object Ed	litor	=		•	×
😤 ≡ ◀	▶ LOA		0	0	х
		FP	arai	net	er
LOA			€	•	?
General				-	
	172.86721225				
Value	SHF_Import_as_off_rorom offsets_stern os_010.getMax(bulb_tip_position p2:x	0) -]0	

28. Add another parameter which will compute wave resistance in kN, name it Rw

📝 🛛 Object Edit	or			۹	×
🔊 ≡ ◀ ▶	⊳ Rw		0	0	×
		FP	arar	net	er
Rw			e		?
General					
	26.48209929				
Value	eval_CWTWC * eval_Sref * (16 2) * 0.5 * 1000 * 0.28 * sqrt(9 162) / 1000	52 ^ .81 *	k .]0	2
					_

29. Rescale eval_V to get the value in m^3

📝 Object Edite	or 🔳 🔺	•	x
🔊 ≡ ◀ ▶	eval_V 🔍	0	х
eval_V	FParan 9	neto	er 2)
General			
Value	22405.48381635 comp.getResults().getProgramData("XPAN"). getElementAt("V") * (162 ^ 3)] 🖸	

30. Add a Constraint, name it LOA_constraint. Monitor LOA parameter and set the max value to 172

:/	mag	nus/tem	p/roro_opt.fdb)*		
	Opti	imization	Visualization	Features	View	Help 🕐
2		Create N	ew Design From) Current De	sign	
s		Design Va	ariable			Documentation Browser A
1	₽	Inequality	y Constraint			seline: XPAN 💽
t. t.		Equality (Constraint			FInequalityConstraint
	D	Design La	ъ			An inequality constraint monitors ar comparison of inequality based on a
	\square	Ensemble	Investigation			The constraint gets active if the mc bound ("limit").
tl		Exhaustiv	ve Search			Additionally, a warning distance car monitored value reaches the bound

Dispect Tree		
P 🗅 CAD	🖵 Connections D Optir	nization
Туре	Name	
	✓ ✓ Constraints	
FInequalityConst	InequalityCor	nstraint
	V D DOSIGNS	
Object Edit		
🕐 Object Edit	tor	
 Ø Object Edit 	tor InequalityConstraint	
Ø Object Edit	tor ▶ InequalityConstraint FIneq	ualityConstrain
Object Edit	tor InequalityConstraint FIneq nstraint	ualityConstrain
 ✓ Object Edit ☆ ■ < > □ LOA_Con General 	tor InequalityConstraint FIneq nstraint	ualityConstrain
Object Edit Control Control	tor InequalityConstraint FIneq Instraint 172.86721225	ualityConstrain
Object Edit Concerned Concerned Monitor	tor InequalityConstraint FIneq Instraint 172.86721225 LOA	ualityConstrain
Object Edit Content Content	tor InequalityConstraint FIneq Instraint 172.86721225 LOA	ualityConstrain
Object Edit Object Edit Comparator Object Edit Comparator	tor InequalityConstraint FIneq Instraint I72.86721225 LOA <	ualityConstrain

31. Add a Constraint, name it Displ_constraint. Monitor eval_V parameter and set the min value to 22381.9

📝 Object Edito)r		•	x
☆ ■ ◀ ▶	InequalityConstraint	୍ଦ୍	0	×
Displ_Co	FInequa	lityConst	rain	it)
General				
Monitor	22405.48381635 eval_V	*) 2)
Comparator	>	-) (?)
Limit	22381.9	•) 🗔)

Tutorial 2 part 2 – Ensemble Investigation

1. Create Ensemble Investigations

2. Set the parameters according to the image below:

11

	Object Editor								×
R		Ens	embleInv	estig	ation		0		х
				FEnse	mbleInv	esti	gati	ion	*
C	CEnsembleI	nve	estigatio	n) 🕨	•	?	
G	eneral								
Er	nable Result Poo		6				(2	
D	esign Pre/Pos	tpr	ocessing						
So	reenshots	0		-	2 +	0) (2	
D	esign Variable	s							
	Design Variabl	е	Series	Value	Active				
1	delta_height	+	-1, 0, 1	1	×	8			
2	delta_length	+	-2, 0, 2	3	×	8			
3		•							=
Ev	valuations								
	Evaluation		Objective						
1	Rw	-		8					
2		-							
	5								
Co	onstraints								
	Constrain	t	Consid	ered					
1	Displ_Constrain	ht	•		8				
2	LOA_Constrain	t	•		8				
3			•						

- 3. Save the Project.
- 4. Run Ensamble Investigation.
- 5. When the calculations are finished the following result table should be available. Notice That some of the Design Variants violate the constraints.

		2 Do	ocumentation Browser 🛛 🗶	🛓 3DView 🗙 🛕	3DOverView ×	FileViewer	× 🛅 TableViewer	🖌 🗙 🛅 Ensemb
•	0	۰.	PDF CSV [] 🚺 🚺			× ©		
,				⊾ delta_height	⊾ delta_length	⊾ R₩	🔰 Displ_Constra	🔰 LOA_Constrai
			Attribute	Active	Active			
۹			Name	delta_height	delta_length	Rw	Displ_Constraint	LOA_Constraint
			Scope	bulb_delta_height	bulb_delta_length			
			Reference					
			Lower Bound	-1	-2	26.319114	> 22381.9	< 172
Ð			Upper Bound	1	2	26.54825		
,			Feasible Designs: 33.333333 %				55.555556 %	77.77778 %
٦			Mean Utilization Index				96.713386 %	48.395715 %
			Mean	0	0	26.428745	22382.688	170.928
			Sample Standard Deviation	0.8660254	1.7320508	0.082876061	23.960222	1.8776342
			Error-free: 100 %	100 %	100 %	100 %	100 %	100 %
			-				_	_
		Σ	EnsembleInvestigati	-1	-2	26.361546	22371.307	169.95839
		Σ	EnsembleInvestigati	-1	0	26.319114	22396.404	171.89761
		Σ	EnsembleInvestigati	-1	2	26.320528	22420.154	173.83682
		Σ	EnsembleInvestigati	0	-2	26.484882	22357.448	168.98879
		Σ	M EnsembleInvestigati	0	0	26.42412	22382.706	170.928
		Σ	EnsembleInvestigati	0	2	26.411024	22406.748	172.86721
		Σ	EnsembleInvestigati	1	-2	26.54825	22345.724	168.01918
		٤	EnsembleInvestigati	1	0	26.5059	22369.856	169.95839
		Σ	🗾 EnsembleInvestigati	1	2	26,483344	22393.844	171.89761

Tutorial 3 part 1 – Forebody optimization – shoulder – Surface Delta Shift

For this tutorial you need to use Friendship FRAMEWORK together with SHIPFLOW.

- 1. Import roro_medium SHIPFLOW configuration from **DVD:\AdvancedTraining\Tutorial_Advanced_3\source**
- 2. Save the project as roro_opt_shoulder.fdb
- 3. Go to 3DView end extend the view to see the entire hull.
- 4. From the CAD menu select Surfaces | Planar B-Spline Surface

5. Use the settings as below to cover the forward part of the hull

Create Feature: SurfacePlaneBSpline		
Description	F f1	SurfacePlaneBSpline
Creates a simple B-Spline surface in a plane at a specified elevation.	Plane Settings	
The number of control vertices can be set for the surface's	Plane	Y - (Z,X)
u- and v-direction (parameter domain). The surface is defined via a lower corner position and an upper corner position, each specified by two input values. Optionally, 3D	Elevation	0 .
points can be automatically generated from the control	Control Points	
ventices vector data too.	CP in U-Direction	7
	CP in V-Direction	6 7
	Create Control Points	
a to the second	Lower Corner Po	sition
	Start First Axis	-8.18
	Start Second Axis	0.85 🔹 🥐
	Upper Corner Po	sition
	End First Axis	3 🔹 🤊
	End Second Axis	66 🔹 🔹
		🕞 Execute 🛛 🔇 Cancel

6. The resulting patch should resemble the one shown below

7. Create two Design Variables, name them lower and higher

8. Select points of the delta surface as in the picture (2nd row from the bottom, columns 3,4 and 5) and replace their y-coordinate with lower Design Variable

9. Select points of the delta surface as in the picture (4th row from the bottom, columns 3,4 and 5) and replace their y-coordinate with higher Design Variable

✓ Object Editor ☆ ■ ↓	■ ▲ ◀ X 3, f1 u= ♀ □ ×	7	
different values	F3DPoint		-
General		┉┉┉╽╎╎╎╎╎╎╎╎╎╎	l
x [• ?		•
Y 0 [higher]	•		•
Z -1.472	• ?		
Display Options			
Color	- 🥹 🛛 🕐		

10. Cretate Surface Delta Shift transformation based on the surface patch that was added earlier. Name it surface_transformation.

FRIENDSHIP-Framework - Z:/magnus/te	mp/roro_opt_shoulder.fo	ib*	
File CAD Connections Optimizatio	n Visualization Feature	es View Help 🕐	
🔍 🥄 💼 Scope	0 9 0 1	Ⅱ ■ 📝 👗	
D Objec	= A 4 X 💼	Documentation Brow	ser X 🔊 3DView X 🔊 3DOverView X
P C Points	ation		
ype / Curves	· //		
3DPoint 🔲 Surfaces 🕨	2		
3DPoint Parameters	?		
3DPoint offsets	2		
3DPoint 🗎 Meshes and Solids 🕨	2		
3DPoint C Transformations	Rotation		
3DPoint 🗹 Blade 🕨 🕨	🖫 Scaling		
3DPoint 3DPoint E FSurfaceDeltaShift F12	Translation		
SDPoint + • u6_v1	More	•	
'3DPoint + • u6_v2 '3DPoint + • u6_v3 '3DPoint + • u6_v4	Sweep		
3DPoint + • u6_v5	🖳 Shifts	Carterian Shift	1
BSpline + surface	Auxiliaries	Cartesian Sinit	
Object Editor			
🖄 🔳 ┥ 🕨 delta_surface surface	🤘 Coordinate System	ᡖ Surface Delta Shift	Ef-infaceDoltaChift
FBS	plineSurface	Lackenby	rsurfaceDeicasnit
C surface	62		
General			
U0_v0, u0_v1, u0_v2, u0_v3, u0_v4, u0_v5]			

11. Set it up to use surface patch and act in Y direction.

📝 Object Ed	ditor	■ ▲ ◀ X
\$ ■ ◀	surface_transformation	_ Q X
	FSurfa	aceDeltaShift
🖥 surfac	e_transformation	?
General		
Delta X		?
Delta Y	×	?
Delta Z		?
Factor	1	• ?
Deltasurface	delta_surface surface	• ?
Coordinate	Υ	• ?

ILIND.	of the	-maniework - 2./magnus	/ te	mp/1	oro_opt_shour	ueran	ub								
File (CAD	Connections Optimiza	atior	n V	isualization Fe	ature	es	View	Help	?					
		Scope		9	• •	►	П			¥					
Objec	。 少	Points Curves	•	atio		• • //	ſ	2	Docum	entation Bro	owser	×	A	3DView	
e e		Surfaces Parameters	+	m	?										
me ne	×	Offsets	Þ	•	Section Group										
		Meshes and Solids Transformations	► ►		Plane										
	ſ	Blade	Þ	••• •	Offset Offset Group										
	٦	FSurfaceDeltaShift F12		•	Offset Group A	ssem	ыly								
				•	Image Offset G	iroup		- FI	mageO	offsetGrou	p				

12. Create image of the hull offset group, name it hull.

13. Use surface_transformation as the Image transformation

14. In the offset group assembly replace the original hull group with the image.

FScope FScope FScope FOffsetG FImageO FParame FSurface		 SHF_Import_as_off_ror ○ offsets_bulb ○ offsets_hull ○ offsets_stern ◇ as_as_off_rorom ◇ hull > higher > lower surface_transformation 	om			
📝 Obje	ect Editor				•	x
\$ ■	< ▶	SHF_Import_as_off_ror	om -	0		×
		FOffsetG	roupi	Assi	emb	ly -
💽 as	_as_off	_rorom				?
Genera	L					
	÷ 8	+ offsets_bulb bulb		-]	

15. Test if the set up works by modifying lower and higher design variables and see if the hull offset changes shape.

- 16. Set both lower and higher design variables to 0 and run the calculations.
- 17. When the calculations are finished create parameters for evaluations by double clicking on values of CWTWC, Sref and V.

P CAD Connections Optimization Type Name Image: Step in the state in the	🖻 Object Tree			x		🕂 [🕐 Do	cumentation Browse
Type Name PScope delta_surface fScope fScope delta_surface fScope fScope delta_surface fScope f	P 🗅 CAD 🖵	Connections D Optimizati	on		•		
▲ baseline ? 0 FScope ▶ delta_surface ? 1 FScope ▶ offsets_bulb ? 1 FScope ▶ offsets_bull ? 1 FScope ▶ offsets_stern ? 1 FOffsetG ImageO ImageO ImageO FParame ImageO ImageO ImageO	Type Name					a base	line: XPAN 💽
FScope Image: Constraint of the surface FOffsetG Image: Constraint of the surface FParame Image: Constraint of the surface Ford Image: Constraint of the surface Ford Image: Con	⊿ 🗋	baseline		2	1		0
FScope > offsets_stern ? WPA 0.127241 FOffsetG @ as_as_off_rorom ? @ 0.835253 FImageO > hull ? @ 0.651086 FParame > lower ? @ 0.64453 FParame > lower ? @ 0.515262 FSurface Surface_transformation ? VCB -0.0243359 FParame eval_V ? VCB -0.0243359 FParame eval_Sref ? V 0.00526463 CW 0.00194882 CWTWC 0.00943436 Sref 0.191222 CZSINK -0.0398397 CMTRIM -8.19272e-05 XCOF 0.546956	FScope ▷ FScope ◢ FScope	 delta_surface SHF_Import_as_off_rorom ♦ ● offsets_bulb ▶ ● offsets_bull 		???????????????????????????????????????		LPP B T	1 0.152338 0.0530788
FInageO ImageO	FScope FOffsetG	 Offsets_stern as as off rorom 		2		WPA	0.127241
FParame Iower CPRISM 0.64453 FSurface surface_transformation ICB 0.515262 FParame eval_V V VCB -0.0243359 FParame eval_CWTWC S 0.197199 FParame eval_Sref V 0.00526463 CWTWC 0.00194882 CWTWC 0.000943436 Sref 0.191222 CZSINK -0.0398397 CMTRIM -8.19272e-05 XCOF 0.546956	FImageO	 hull higher 		?		COPA	0.651086
FParame vcB -0.0243359 FParame eval_CWTWC s 0.197199 FParame eval_Sref v 0.00526463 CW 0.00194882 CWTWC 0.00943436 Sref 0.191222 CZSINK -0.0398397 Object Editor XCOF 0.546956	FParame FSurface	lower surface_transformation		?		CPRISM LCB	0.64453 0.515262
FParame eval_Sref V 0.00526463 CW 0.00194882 CWTWC 0.000943436 Sref 0.191222 CZSINK -0.0398397 CMTRIM -8.19272e-05 COF 0.546956	FParame FParame	val_V val_V val_CWTWC		?		VCB S	-0.0243359 0.197199
CW 0.00194882 CWTWC 0.000943436 Sref 0.191222 CZSINK -0.0398397 CMTRIM -8.19272e-05 XCOF 0.546956	FParame	⊾ eval_Sref		2		٧	0.00526463
Sref 0.191222 CZSINK -0.0398397 CMTRIM -8.19272e-05 XCOF 0.546956						CW CWTWC	0.00194882 0.000943436
CZSINK -0.0398397 CMTRIM -8.19272e-05 XCOF 0.546956						Sref	0.191222
CMTRIM -8.19272e-05						CZSINK	-0.0398397
📝 Object Editor 🛛 🔳 🛦 🚽 🗙 XCOF 0.546956	L					CMTRIM	-8.19272e-05
	📝 Object Editor		■ ▲ ◀	×		XCOF	0.546956

18. Rescale eval_V to get the value in m^3

19. Add another parameter which will compute wave resistance in kN, name it Rw

📝 Object Edito	or	=		-	×
😤 ≡ ◀ ▶	Rw		0		×
Rw General		FP a	araı €	met	er ?)
Value	26.42411969 eval_CWTWC * eval_Sref * (16 2) * 0.5 * 1000 * 0.28 * sqrt(9, 162) / 1000	2 ^ 81 *		,].	
Design Variable				6	

20. Add a constraint minDispl for minimum Displacement and set it to 22382.5

📝 Object Editor					۹	x
्रि 🕈 🔰 👘	ninDispl			0	0	х
minDispl		FInequali	:yC	ons G	trai	nt ?)
General						
Monitor	22382.70582004 eval_V					2
Comparator	>			-) (2
Limit	22382.5			•) (2
Warning Distance) (

Tutorial 3 part 2 – NSGA-II Optimization

1. Create NSGA-II Design Engine (genetic algorithm optimization)

2. Set it up according to the image below, lower bound -0.5, upper bound 0.5, evaluation set to Rw and minDispl as a constraint.

/	Object Editor	,				-		
S G	eneral	Nsg	ja2			C	-	
G	enerations		1			*	2	
Po	opulation Size		4			*	2	
Pr	nut		0.01				2	
Po	tross		0.9				2	
Er	nable Result Po	ol 🕽	C				2	
D	esign Pre/Po	stpr	ocessin	g				
So	creenshots			•		+ 0	?	
D	esign ¥ariable	es						
	Design Variab	le	Lower	Value	Upper	Active		
1	higher	•	-0.5	0	0.5	×	8	
2	lower	+	-0.5	0	0.5	×	8	
3		•						
•		-	*****				• F	
Ev	valuations							
	Evaluation	1	Objecti	ve				
1	Rw	•	×	8				
2		•						
C	onstraints							
	Constraint	Con	sidered					
1	minDispl 👻 🛙	×		0				

- 3. Save the project and run the optimization.
- 4. It should take less than 10 minutes on a laptop and the result should resemble the one below

🕂 🕐 Doc	umentation Browser 🗙 🔓	🖌 3DView 🗙 🔺] 3DOverView 🗙	😡 TaskMonitor	× 🖻 FileViewer
Ø 🖪 🦉	" 🗳 D 🚺 🗹			× ©	
•		⊾ higher	lower	⊾ R₩	🗾 minDispl
	Attribute	Active	Active	Objective	Considered
	Name	higher	lower	Rw	minDispl
	Scope				
	Reference				
	Lower Bound	0.034462501	-0.48252842	26.477462	> 22382.5
	Upper Bound	0.32258335	-0.13480583	26.789355	
	Feasible Designs: 100 %				100 %
	Mean Utilization Index				14.088096 %
	Mean	0.14153887	-0.31459144	26.608682	22405.15
	Sample Standard Deviation	0.12580706	0.18908665	0.13280971	17.558579
	Error-free: 100 %	100 %	100 %	100 %	100 %
Ν	Msga2_01_des0000	0.12043183	-0.48252842	26.789355	22429.941
ΝΣ	🕅 Nsga2_01_des0001	0.034462501	-0.16776532	26.5537	22400.186
ΝΣ	🕅 Nsga2_01_des0002	0.088677806	-0.13480583	26.477462	22388.561
Ν	🕅 Nsga2_01_des0003	0.32258335	-0.47326619	26.614211	22401.912

5. This is just an example setup and the optimization parameters should be refined as well as more generations in the NSGA-II should be used.

Tutorial 4 part 1 – Appendage modelling – overlapping grids

There are currently several appendage types in SHIPFLOW. In this tutorial, three of them will be used: rudder, propeller shaft and shaft bracket. All parameters for the respective appendage are given in the description of the RUDDER, SHAFT and BRACKET commands in the Users Manual. Like other commands that specify the geometry, the appendage commands are given in the XFLOW section of the command file. The commands may be repeated to specify several appendages of the same type.

Figure 1: Rudder, shaft and bracket grids.

The appendage grids are not intended to be used independently, they are normally embedded in a grid that covers the computational domain of the un-appended configuration. This is usually the grid generated by XGRID, but there is also the possibility of generating a rectilinear grid with the BOX command. In the example command file below the Hamburg Test Case is appended with a rudder.

- 1. Create a directory which you will use for storing the files used during the assignment
- 2. Import "ropax" configuration from **DVD:\AdvancedTraining\Tutorial_Advanced_4\source**
- 3. Examine the rudder, bracket and shaft parameters.

🖻 Object Tree	■ ▲ ◄	x	📝 Object Editor	II ▲ ◀ X
P 🗅 CAD 🖵	Connections D Optimization		🔊 ≡ ◀ ▶	⊂ , 🗋 ×
Туре	Name		rotat	• +
	Configurations			
FConfigurationShf	- 🕎 ropax	(?)	rudder	0
-	– 🤚 xflow	2		
	title 👆	2	Id rudder	8 ?
	👆 program	2		
	🁆 vship	2	Span 6	- 🛛 🔁 🔽
	in hull	2		
	toffset	2	Angle 10	· 😢 🕐
	A prop	S		
		8	Origin [[0, -3.5, 1]	V V
	shaft	2	s [0, 1]	- 🛛 🔹 😰
	+ 📇 xarid	2	- (
	+ 🤚 xchap	2	∈ [4, 3]	- 🛛 ?
	👂 💻 Computations & Results			
	Applications		Xie [1.5, 0.5]	V V
-				
Diject Tree	■ ▲ ◀	x	📝 Object Editor	■ ▲ <i>◄</i> X
	Connections D Optimization		(2) ■ < >	⊂ □ ×
Туре	Name		scale	
	Configurations			•
FConfigurationShf	- W ropax	2	bracket	0
	- 🤚 xflow	2	DIGCKEL	•
	itle 👆	2	Id outer_bracket	8 ?
	in program 📇	2		

?

?

?

?

?

From [5.3, -3.5, -2]

To [5, -4.5, -0.15]

[0, 1]

[1, 1]

[0.5, 0.5]

Angle 180

Rmax 1.6

S

С

Xle

👆 vship

🎒 offset

🀴 prop

🎦 rudder 🎦 bracket

👆 shaft

+ 🤚 xgrid

+ As xchap

Computations & Results

Applications

ihull 🦰

- 🛛 ?

- 🛛 ?

🔻 🔕 🕐

- 🛛 ?

- 🛽

· 🛛 ?

- 🛛 ?

4. Run the computation with 0 iterations. This will generate the grids and the overlap information.

	🗙 📝 Object Editor 🛛 🔳 🔺 🔺 🗙
nnections D Optimization	× □ ,
e	grids 🔻 🕇
Configurations	
- 🚟 ropax	2 control
+ 🦰 xflow	Charle Charle
+ 📇 xgrid	
🐴 parall	Maxit 0
a control	2
Computations & Results	
Applications	

5. During the computations important information will be printed in the Task Manager

exePath = C:\FLOWTECH\SHIPFL	
	JW5.0.00-x86_64\bin\\\bin/
HIPFLOW 5.0.00 (Rev. 8859	3
xch2 location changed to:	1.025000000000
Starting xchap 5.0 \$Revision	: 8859 \$
Commercial license	
Command file ropax read.	
Computing overlap	
No of frames	: 5
No of grids	: 5
No of points	: 452146
No of interpolation cells :	: 47591
No of discretization cells:	: 457565
No of outside cells	: 39777
Total no of cells	: 544933
Total number of cells 49300	
Number of discretization cel.	15 28086
Number of non-fluid (outside)) cells 14727
Number of non-fluid (outside)) cells 14727
Number of non-fluid (outside) cells 14727 ***********************************
Number of non-fluid (outside Running: C:\FLOWTECH\SHIPFLOU KCHAP: CGNS : create base) cells 14727 ***********************************
Number of non-fluid (outside Running: C:\FLOWTECH\SHIPFLO XCHAP: CGNS : create base Running under MPI: mpiexec -) cells 14727 #5.0.00-x86_64\bin\\\bin/xpongo ropax 1 C:\FLOWTECH\SHIPFLOW5.0.00-x86_64\bin\\\bin/xkw5 ropax
Number of non-fluid (outside Running: C:\FLOWTECH\SHIPFLOU XCHAP: CONS : create base Running under MPI: mpiexec -1 Wall time in process 0: Os) cells 14727 ###################################
Number of non-fluid (outside Running: C:\FLOWTECH\SHIPFLOK KCHAP: CGNS : create base Running under MPI: mpiexec -1 Wall time in process 0: Os) cells 14727 JS.0.00-x86_64\bin\\\bin/xpongo ropax h 1 C:\FLOWTECH\SHIPFLOW5.0.00-x86_64\bin\\\bin/xkw5 ropax
Number of non-fluid (outside Running: C:\FLOWTECH\SHIPFLOK KCHAP: CGNS : create base Running under HPI: mpiexec - Jall time in process 0: 0s 71plus max min) cells 14727 JS.0.00-x86_64\bin\\\bin/xpongo ropax h 1 C:\FLOWTECH\SHIPFLOW5.0.00-x86_64\bin\\\bin/xkw5 ropax average
Number of non-fluid (outside Running: C:\FLOWTECH\SHIPFLOK KCHAP: CGNS : create base Running under MPI: mpiexec - Jall time in process 0: 0s /lplus max min 4.48643 0) cells 14727 JS.0.00-x86_64\bin\\\bin/xpongo ropax h 1 C:\FLOWTECH\SHIPFLOW5.0.00-x86_64\bin\\\bin/xkw5 ropax average 1.03784
Number of non-fluid (outside Running: C:\FLOWTECH\SHIPFLO XCHAP: CONS : create base Running under MPI: mpiexec -1 Wall time in process 0: Os Wall time in access 0: Os ylplus max min 4.48643 0) cells 14727 WS.O.00-x86_64\bin\\\bin/xpongo ropax h 1 C:\FLOWTECH\SHIPFLOWS.O.00-x86_64\bin\\\bin/xkw5 ropax average 1.03784

6. When the computation is finished examine the generated grid. Look at the component grids and the interpolation and outside classification points. Observe how the appendages intersects the hull and each other.

Now the geometry is changed to deliberately create a "leak"

1. Create a Design Variant. Delete the shaft and the bracket from the variant, and change the zcomponent of the rudder origin to -1. Also add xchap | overlap | noleakcheck.

🖹 Object Tree	II ▲ ◄ X	📝 Object Editor	■ ▲ ◀ X
P 🗅 CAD 🖵	Connections D Optimization		⊂ □ ×
Туре	Name	rotat	
	Configurations		
FConfigurationShf	- 🕎 ropax 🔹 🖓	rudder	8
	title	Id rudder	8 ?
	🍓 program 🛛 🕜 🎦 vship	Span 6	· 8 ?
	🁆 hull 🛛 🕐 🧷	Angle 10	· 🛛 ?
	🎦 prop 🛛 🕐	Origin [0, -3.5, -‡]	▼ 🛛 📖
	+ 🎦 xgrid 🛛 🥐 + 🎦 xchap	5 [0, 1]	· 8 ?
	Computations & Results	⊂ [4, 3]	▼ ⊗ ?
FShtComputation		Xle [1.5. 0.5]	
	Applications		

2. Run the variant.

- 3. The progam detects the leak and prints an error message "ERROR: Less than 20% of the cells..." and stops.
- 4. To find the leak, set the parameter xchap>overlap>nfill=70 and re-run. Nfill limits the number of recursions so that the outside points don't contaminate the whole domain and that makes the leak easier to find.
- 5. Re-run the variant and examine the resulting classification. Notice that the Outside cells "spill out" at the top of the rudder since it is an open geometry.

Tutorial 5 part 1 – Complex Appendage modelling

For this tutorial you need to use Friendship FRAMEWORK together with SHIPFLOW.

- 1. Import case_ID SHIPFLOW configuration from **DVD:\AdvancedTraining\Tutorial_Advanced_5\source**
- 2. Import duct.igs IGES file.
- 3. Save the project as kvlcc2_ESD.fdb
- 4. Check the setup, make sure you see the offset sections and duct surface on your screen.

5. In order to create a volume grid for the imported duct grid we shall first make a surface mesh using the surface and thereafter use a hyperbolic grid generator to expand this mesh into 3D.

6. Select the duct surface and create a mesh using Mesh Engine, name it duct_mesh

- 7. Switch off visibility of the offset sections and imported duct surface, notice that the mesh that was just created is extremely coarse and does not represent the object accurately.
- 8. Refine the mesh dimensions and use stretching factor according to the example below

9. To the xchap configuration add volume object

J 10 🥝			0
Name			
- P kvlcc2_ESD	?		1
baseline Joss Impart	2 6	. 1	1
TrimSrf 0001	2		-
SHF_Import_as_off_kvlcc2_ductwithstat	2		
e w case_ID	2 0		_
E a xpan	2	- 11	
🖲 👝 xgrid	?	- 11	
🖃 🦲 xchap	2		/
- A control	2	- 11	En
👆 line	?	- 11	
	7	- 11	2
- D duct mesh	2 0		-
E- Computations			
The state of the s			3000000
er ■ Designs			
Br Designs Br Definitions		•	
Designs Designs Definitions Object Editor	H A 4	×	
Br Designs Br Definitions ✓ Object Editor	II A 4	×	
Bergins Designs Designs Object Editor		× ×	
Br Designs Br Definitions Object Editor Object Editor A A Imon mont		× +	
ter Designs B → Definitions Object Editor to object Editor to object Editor mion mport syrid	- A -	× +	
Belling Designs Belling Designs		× ×	
Br Designs Br Designs	× •	• × +	
Bergins Designs D	× .	× +	
Begins Designs Definitions Object Editor Object Editor Object Editor on mont grid vake sow stuato ine xprop	II A 4	× +	
the Designs B → Definitions Object Editor To Object Editor The Designs Designs Object Editor The Designs Design		+ 3	
Begins Designs De	× 4	+ ×	
the Designs B → Definitions Object Editor Definitions Definit Definitions Definitions De		+ ×	
Begins Designs De		• × +	
Designo D		× + 0	

10. Now we will use the duct_mesh to create volume grid, apply settings according to the illustration

Volu	2 v
📝 Object Editor	■ ▲ ∢ x
📌 ≣ 🔺 ▶	
volsm	- +
volu	8
Id duct	8 ?
File "ductmesh.p3d" duct_mesh.exportPlot3D("ductmesh.p3d")	8 ?
Kmax 20	8 2
Step 2e-05	8 ?
Fac 1.2	8 ?
Bc31 NOSLIP	8 ?

- 11. The setup of the duct is ready but we should add support for this structure. We will use two wings created using rudder objects.
- 12. In the xflow configuration add two rudder objects with the following settings

- 13. Make sure that the number of xchap iteration is set to 0 and start the computations.
- 14. While the computations are running there should be many warning messages appearing in the TaskMonitor, these usually would not appear. However, since this example case is for demonstration only and uses extremely coarse grids the solver may give various warnings.
- 15. When the computations are finished, display surface meshes on the duct and supporting it blades as well as on the refinement of the hull. The correct set up should resemble the one below.

* Note that the grids used in this tutorial is not fine enough for design applications.

Tutorial 5 part 2 – Appendage optimization

- 1. Continue the work from the previous part or open the file kvlcc2_ESD.fdb located in **DVD:\AdvancedTraining\Tutorial_Advanced_5\intermediate**
- 2. We will optimize the supporting blade angle of attack using systematic variations with Ensemble Investigation.
- 3. First we will have to prepare a self propulsion setup in order to have objective function for the optimization.
- 4. Turn on the propeller.

5. Add selfprop command to xflow configuration and use the settings as below, make sure that the Pow command points to the right file which was in source directory for this Tutorial.

•	selfpr	?		•
📝 Oł	oject Editor		▲	< ×
🔊 ≡	∎ ◀ ▶			
nominal			•] +
selfpr				8
Onoff	on	-	8	?
Ctow	0.001		8	?
Pow	C:\course20120419-Korea\XMESH-XPAN-XBOUND- DESIGN\Tutorials_and_Exercises\Tutorial_Advanced_3\source\prop- pow.txt		8	?
Ctto	0.003		8	?

- 6. Set number of xchap iterations to 10 and start the case, it should take about 10 minutes on a laptop
- 7. When the calculations are finished go to the TableViewer and by double clicking on the KQ and JV create parameters.

8. Now add additional parameter PD that will represent delivered power using the following formula

FParameter PD	2	• •
Object Editor		x ≽ ≜ 1
📌 🗏 🔺 🕨 Qn		
	FPa	arameter
		•
General		-
7.00926415		
Value 2 * pi() * ((1.25 / (eval_JV * 0.22)) ^ 3) * eval_KQ * 1000 * (0.22	^ 5)	?

9. Create two Design Variables which will be used as input for angle of attack, name them

AOA_port and AOA_stb and set both to 20.

📝 Object Editor	≡ ▲ ∢ >
📌 🔳 ┥ 🕨 AOA_port	
	FDevaDouble
AOA_port	2
General	Ψ.
Value 20	2

10. In the xflow | rudder configurations replace the Angle with the Design Variables

1 0	biact Editor		💟 Object Editor	■ ▲ ◀ 2
	■ 1 ►		🖈 🔳 🛠	
5 = t		I +	tilt	
udde	:r	8	rudder	8
d	rpc	8 2	Id rsc	8 2
īpan	3.2	8 2	Span 3.2	8 ?
	20		20 Angle	
Angle	AOA_port	•••	AOA_stb	
Cant	90	₿ ?	Cant -90	
Drigin	[7.6, 0, 5.8]	8 2	Origin [7.6, 0, 5.8]	
5	[0, 1]	8 2	S [0, 1]	8 2
-	[2.5, 2]	8 ?	⊂ [2.5, 2]	8 2
(le	[0.75, 0.5]	8 2	Xle [0.75, 0.5]	8 ?
)ime	[30, 20, 20]		Dime [30, 20, 20]	

11. Add Ensamble Investigation

Integration Visualizatio	n Features Toolbars Wi	ndows Help
 Design Engines Design Add-Ons 	Design Lab Ensemble Investigation	onBrowser A 3DView FileViewer TableView
Configurations Computations	 Exhaustive Search Sobol Brent 	FEnsembleInvestigation The Ensemble Investigation allows to permute a set of design variable values given as series. Objectives are only evaluated for the given variable values and constraints are not considered.
Hydrostatic NuShallo FRIENDSHIP-Modeler	 NelderMeadSimplex TSearch Newton-Raphson 	ExhaustiveSearch and Sobol are used to generate so called DoE (Design of Experiments) tables. Exploration DoEs are
Generic Custom Shinflow	D NSGA-II D MOSA	

- 12. Use both AOA_port and AOA as Design Variables and add variation +/- 5 degrees
- 13. Use PD for Evaluation of the results.

Object	Editor				
°≣ ' -	•••	EnsembleInvestig -	gation		
creenshots	;			- 1	0 2
)esign va	riables				
Design	variable	Series	Value	Active	
[AOA_po	rt 🝷	15,20,25	20	×	
AOA_sti	· ·	15,20,25	20	× Ø	
_					
valuation	IS				

- 14. There will be 9 different variants created if you run this case and each should be run until convergence. Moreover, the grids should be much finer to give good results so we will only look at the grid modifications.
- 15. Go to xchap configuration and in control add grids command to prevent from running the

solver. Also use xchap only in the xflow|program configuration. Now you can start the Ensemble Investigation.

Control	? ? ? •
Object Editor	■ ▲ ◀ X
★ ■	
verbose	. + .
control	
Start start	• ?
Maxit 10	8 ?
Grids	8 2

16. When the computations are finished check the different variants and verify that the angle of attack was varied appropriately. Since the actual xchap solver was not run there will be no valid flow calculations.

🕐 DocumentationBrowser 🔥 3DView 📄 FileViewer 🏢 TableViewer 🛅 EnsembleInvestigation_1_results								
0		; D 🛛 🖻 🗹		🖷 🖪 🛛 🖳	🖉 X 🔇			
A			AOA_port	AOA_stb	PD			
	Attribul	e	Active	Active				
	Name		AOA_port	AOA_stb	PD			
	Scope							
	Refere	nce						
	Lower E	Bound	15	15	nan			
	Upper B	Bound	25	25	nan			
	Feasible	e Designs: 0 %						
	Mean U	Itilization Index						
	Mean		20	20	0			
	Sample	Standard Deviation	4.330127	4.330127	0			
	Error-fr	ree: 0 %	100 %	100 %	0%			
			_					
N 2	🛙 📕 📗 En	sembleInvestigati	15	15	nan			
	🛙 📕 📗 En	sembleInvestigati	15	20	nan			
	🗄 📕 📗 En	sembleInvestigati	15	25	nan			
	🛿 📕 📗 En	sembleInvestigati	20	15	nan			
	🗄 📕 📗 En	sembleInvestigati	20	20	nan			
	🗉 📕 🕕 En	sembleInvestigati	20	25	nan			
	9 🔳 🕕 En	sembleInvestigati	25	15	nan			
	9 🔳 🕕 En	sembleInvestigati	25	20	nan			
M 12	🗉 🔲 💷 En	sembleInvestigati	25	25	nan			

- * The calculation execution with the Grids keyword will result with PD = nan.
- ** Keyword Grids is used only to check correctness of the grids, RANS solver is not executed
- *** Note that the grids used in this tutorial is not fine enough for design applications.